Scientific Papers

Non-destructive whole-brain monitoring using nanorobots: Neural electrical data rate requirements

Abstract: Neuronanorobotics, a promising future medical technology, may provide the ultimate tool for achieving comprehensive non-destructive real-time in vivo monitoring of the many information channels in the human brain. This paper focuses on the electrical information channel and employs a novel electrophysiological approach to estimate the data rate requirements, calculated to be (5.52 ± 1.13) x 1016 bits/sec in an entire living human brain, for acquiring, transmitting, and storing single-neuron electrical information using medical nanorobots, corresponding to an estimated synaptic-processed spike rate of (4.31 ± 0.86) x 1015 spikes/sec.

Citation: Nuno R. B. Martins, Wolfram Erlhagen, Robert A. Freitas Jr., “Non-destructive whole-brain monitoring using nanorobots: Neural electrical data rate requirements”, Intl. J. Machine Consciousness 4(June 2012):109-140.

Action Potential Monitoring Using Neuronanorobots: Neuroelectric Nanosensors

Abstract: Neuronanorobotics, a key future medical technology that can enable the preservation of human brain information, requires appropriate nanosensors. Action potentials encode the most resource-intensive functional brain data. This paper presents a theoretical design for electrical nanosensors intended for use in neuronanorobots to provide non-destructive, in vivo, continuous, real-time, single-spike monitoring of action potentials initiated and processed within the ~86 × 109 neurons of the human brain as intermediated through the ~2.4 × 1014 human brain synapses. The proposed ~3375 nm3 FET-based neuroelectric nanosensors could detect action potentials with a temporal resolution of at least 0.1 ms, enough for waveform characterization even at the highest human neuron firing rates of 800 Hz.

Citation: Nuno R. B. Martins, Wolfram Erlhagen, Robert A. Freitas Jr., “Action Potential Monitoring Using Neuronanorobots: Neuroelectric Nanosensors”, Intl. J. Nanomaterials and Nanostructures 1(June 2015):20-41.

Human Connectome Mapping and Monitoring Using Neuronanorobots

Abstract: Neuronanorobotics is the application of medical nanorobots to the human brain. This paper proposes three specific classes of neuronanorobots, named endoneurobots, gliabots and synaptobots, which together can non-destructively map and monitor the structural changes occurring on the 86 x 109 neurons and the 2.42 x 1014 synapses in the human brain, while also recording the synaptic-processed 4.31 x 1015 spikes/sec carrying electrical functional information processed in the neuronal and synaptic network.

Citation: Nuno R. B. Martins, Wolfram Erlhagen, Robert A. Freitas Jr., “Human connectome mapping and monitoring using neuronanorobots”, Journal of Evolution and Technology – Vol. 26 Issue 1 – January 2016 – pgs 1-24.